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Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices
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We reveal the generic characteristics of wave-packet delocalization in two-dimensional nonlinear disordered
lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system
and the discrete nonlinear Schrödinger equation. We find that in both models (a) the wave packet’s second
moment asymptotically evolves as t am with am ≈ 1/5 (1/3) for the weak (strong) chaos dynamical regime, in
agreement with previous theoretical predictions [S. Flach, Chem. Phys. 375, 548 (2010)]; (b) chaos persists,
but its strength decreases in time t since the finite-time maximum Lyapunov exponent � decays as � ∝ tα� ,
with α� ≈ −0.37 (−0.46) for the weak (strong) chaos case; and (c) the deviation vector distributions show the
wandering of localized chaotic seeds in the lattice’s excited part, which induces the wave packet’s thermalization.
We also propose a dimension-independent scaling between the wave packet’s spreading and chaoticity, which
allows the prediction of the obtained α� values.
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I. INTRODUCTION

The normal modes (NMs) of disordered linear lattices
are spatially localized for strong-enough disorder, and, con-
sequently, any initial compact wave packet stays localized
forever. This pioneering theoretical result was obtained by
Anderson and is referred to as Anderson localization (AL)
[1]. Several experimental manifestations of AL have been
reported to date [2]. However, what happens to AL in the
presence of nonlinearity is still an open question, which has
been discussed widely [3–20]. Two models have been at the
center of these studies: the disordered Klein-Gordon (DKG)
lattice of coupled anharmonic oscillators and the disordered
discrete nonlinear Schrödinger equation (DDNLS). For both
models, it was found that nonlinearity eventually destroys
AL, leading to a slow subdiffusive spreading of wave packets,
whose second moment grows in time t as t am (0 < am < 1)
[3,5–7,11–13,16]. In particular, an asymptotic spreading
regime called “weak chaos,” where am = 1/(1 + 2d ) (d being
the lattice spatial dimension) was identified [6,7,12], while an
intermediate spreading regime named “strong chaos,” with
am = 1/(1 + d ), may also occur [11–13].

The wave-packet spreading in nonlinear disordered lattices
is a chaotic process induced by the systems’ nonintegrability
and resonances between NMs [7,10,12]. Such deterministic
chaotic processes result to the randomization and thermal-
ization of wave packets [8,14,15,17–19]. The computation of
the finite-time maximum Lyapunov exponent (MLE) � for
initially localized excitations in one-dimensional (1D) lattices
[17,19] showed that the wave packet’s chaoticity is charac-
terized by a positive but decaying MLE. Furthermore, the
evolution of the deviation vector associated to � indicated
the existence of chaotic seeds which randomly wander inside
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the wave packet ensuring the chaotization of the excited
degrees of freedom.

Although the dynamics of 1D lattices has been studied ex-
tensively, less numerical work has been done for 2D systems.
One of the main obstacles there is the very large computa-
tional effort required for the long-time simulation of these
models (especially of the 2D DDNLS system). In Ref. [5]
the wave-packet spreading in the 2D DDNLS model for the
weak chaos regime was studied up to t = 106 time units,
while in Ref. [21] a similar model, including also nondiagonal
nonlinear terms, was considered. In both cases statistical
analyses over a few disorder realizations were performed [22].
In Ref. [16] results for times up to t = 108 with statistics
over 400 realizations were reported but only for the 2D DKG
model. There nonlinear terms with different exponents were
also considered. For the typical DKG system with quartic
nonlinearities only the weak chaos regime was investigated,
probably because the strong chaos case, which is character-
ized by faster spreadings, would require the computationally
demanding integration of larger lattices.

Here we focus our attention on the 2D DKG and DDNLS
models with quartic nonlinearities. We not only study the
characteristics of wave-packet spreading for both the weak
and strong chaos regimes but also analyze in depth their
chaotic behavior through the computation of their MLE and
the associated deviation vector distributions (DVDs), as was
done in Refs. [17,19] for their 1D counterparts.

The paper is organized as follows. In Sec. II we present the
two Hamiltonian models we consider in our study, along with
the various quantities we use in order to analyze their dynam-
ical behavior. In addition, we provide information about our
numerical computations. In Sec. III we present our numerical
findings about the chaotic behavior of the DKG and the
DDNLS models, while in Sec. IV we summarize our findings
and discuss our conclusions.
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II. MODELS AND COMPUTATIONAL ASPECTS

The Hamiltonian of the 2D DKG system [16,23] in canon-
ical coordinates ql,m (positions) and pl,m (momenta) is

HK =
∑
l,m

{
p2

l,m

2
+ εl,m

2
q2

l,m + q4
l,m

4
+ 1

2W

×[(ql,m+1 − ql,m)2 + (ql+1,m − ql,m)2]

}
, (1)

with εl,m being uncorrelated parameters uniformly distributed
on the interval [1/2, 3/2]. The Hamiltonian of the 2D DDNLS
model [5,16,24] in real canonical coordinates ql,m and pl,m

reads

HD =
∑
l,m

[
ε̂l,m

2

(
q2

l,m + p2
l,m

)+ β

8

(
q2

l,m + p2
l,m

)2 − (ql,m+1ql,m

+ ql+1,mql,m + pl,m+1 pl,m + pl+1,m pl,m)

]
, (2)

where ε̂l,m are random numbers uniformly drawn in the inter-
val [−W/2,W/2] and β � 0 is the nonlinear coefficient. In
Eqs. (1) and (2) l and m are integer indices, W represents the
disorder strength, and fixed boundary conditions are imposed.
The system’s evolution conserves the Hamiltonian value (also
referred to as energy) H = HK (1) [HD (2)] for the DKG
[DDNLS] model. The DDNLS system has an additional inte-
gral of motion: the norm S = ∑

l,m(q2
l,m + p2

l,m)/2. We define
for the DKG model the normalized energy density distribution
ξl,m = hl,m/HK [16,23], where

hl,m = p2
l,m

2
+ εl,m

2
q2

l,m + q4
l,m

4
+ 1

4W

× [(ql,m − ql−1,m)2 + (ql,m − ql,m−1)2

+ (ql,m+1 − ql,m)2 + (ql+1,m − ql,m)2], (3)

is the energy of site (l, m), while for the DDNLS system the
normalized norm density distribution ξl,m = sl,m/S [16,24],
with

sl,m = q2
l,m + p2

l,m

2
. (4)

We follow the evolution of a compact square excitation
of side L in the middle of the lattice, so that all initially
excited sites of the DKG (DDNLS) system have the same
hl,m (sl,m) value. We also investigate the systems’ chaoticity
by computing the finite-time MLE [25,26]

�(t ) = 1

t
ln

[ ‖w(t )‖
‖w(0)‖

]
, (5)

where w(0) and w(t ) is respectively a deviation vector to
the systems’ considered orbit at times t = 0 and t > 0. Here
‖ · ‖ represents the usual Euclidian norm. For regular orbits �

tends to zero as � ∝ t−1 [25,26]; otherwise, the orbit is con-
sidered chaotic. The deviation vector’s coordinates are small
perturbations δql,m(t ), δpl,m(t ), whose evolution is governed
by the so-called variational equations (see, e.g., Ref. [26]).
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FIG. 1. Weak chaos. Averaged results of the evolution of m2(t )
[(a) and (c)] and �(t ) [(b) and (d)] for [(a) and (b)] the DKG,
and [(c) and (d)] the DDNLS model. The presented cases are
W 1K , W 2K , and W 3K for the DKG and W 1D, W 2D, and W 3D the
DDNLS model [blue (b), green (g), and red (r), respectively, for both
models]. Shaded areas indicate one standard deviation. Insets: The
associated derivatives am(t ) [(a) and (c)] and α�(t ) [(b) and (d)]. The
straight dashed lines indicate am = 0.2 [(a) and (c)] and α� = −0.37
[(b) and (d)].

We also compute the DVD [17,19]

ξD
l,m = δq2

l,m + δp2
l,m∑

l,m(δq2
l,m + δp2

l,m)
. (6)

For all mentioned distributions, we calculate the second
moment

m(D)
2 =

∑
l,m

∥∥r(D)
l,m − r(D)

l,m

∥∥2
ξ

(D)
l,m , (7)

which quantifies the distribution’s extent, and the participation
number

P(D) = 1∑
l,m

(
ξ

(D)
l,m

)2 , (8)

which measures the number of highly excited sites,

where r(D)
l,m = (l (D), m(D) )T and r(D)

l,m = (l
(D)

, m(D) )T =
(
∑

l,m lξ (D)
l,m ,

∑
l,m mξ

(D)
l,m )T is the distribution’s center, with T

denoting the matrix transpose and superscript (D) referring to
the DVD.

We implement the ABA864 symplectic integrator [23,27]
for the evolution of the DKG model along with the tangent
map method for the integration of its variational equations
[28] and the s11ABC6 scheme [24,29] for the DDNLS system.
Typically, we perform simulations up to a final time t f ≈
106–108. In order to exclude finite-size effects lattice sizes
up to 450 × 450 were considered, which were always much
larger than the NMs’ average participation number. This quan-
tity decreases when W grows as is seen in the inset of Fig. 1
of Ref. [16], where it is called “localization volume” [30].
The used integration time steps τ ≈ 0.1–1.15 result to a good
conservation of the systems’ integrals of motion as the relative
energy (norm) error was always kept below 10−3 (10−2).
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We average the values of an observable Q over 50 disorder
realizations (denoting by 〈Q〉 the obtained average value) and
evaluate the related local variation αQ = d〈log10 Q〉/d log10 t
through a regression method [31] as in Refs. [11,13,16,17,19].

III. RESULTS

Initially, we study the weak chaos regime. For the DKG
system we consider the cases W = 10, L = 3, hl,m = 0.0085
(Case W 1K ), W = 10, L = 1, hl,m = 0.05 (Case W 2K ), and
W = 11, L = 2, hl,m = 0.0175 (Case W 3K ). For the DDNLS
system we set W = 10, L = 2, β = 0.15, sl,m = 1, HD ∈
[−1.9, 0.73] (Case W 1D); W = 10, L = 1, β = 0.92, sl,m =
1, HD = 0.5 (Case W 2D); and W = 12, L = 1, β = 1.75,
sl,m = 1, HD = 0.5 (Case W 3D). We note that for single site
excitations (L = 1) we keep the value ε̂l,m of the initially
excited site constant in all disorder realizations so that all
cases have the same HD, while for L > 1 HD depends on the
particular realization. Since the DDNLS system admits two
integrals of motion, and always sl,m is fixed, we take particular
care so that the used HD values correspond to the Gibbsian
region of the energy-norm density space [32]. The evolution
of m2(t ) both for the DKG [Fig. 1(a)] and the DDNLS model
[Fig. 1(c)] clearly shows an asymptotic power-law increase
m2 ∝ t am with am ≈ 0.2 [33], in agreement to the theoretically
obtained value am = 1/5 [12]. This value was also retrieved in
Ref. [16] but only for one DKG case. The chaotic nature of all
these weak chaos cases becomes evident from Figs. 1(b) and
1(d) where the evolution of �(t ) is shown. For both models
we find an asymptotic decrease � ∝ tα� , with α� �= −1,
similarly to what has been observed for 1D lattices [17,19].
In particular, α� converges around α� = −0.37 for all cases.

We also investigate the strong chaos regime, which was
not studied before for systems (1) and (2). For the DKG
system we consider the cases W = 9, L = 35, hl,m = 0.006
(Case S1K ); W = 10, L = 21, hl,m = 0.0135 (Case S2K ); and
W = 12.5, L = 15, hl,m = 0.035 (Case W 3K ), while for the
DDNLS system we set W = 10.5, L = 21, β = 0.145, sl,m =
1, HD ∈ [0, 61.74] (Case S1D); W = 11, L = 10, β = 0.68,
sl,m = 1, HD ∈ [−6, 3.5] (Case S2D); and W = 14, L = 15,
β = 6, sl,m = 0.12, HD ∈ [0, 0.75] (Case S3D). The evolution
of m2(t ) for these cases [Figs. 2(a) and 2(c)] shows again that
eventually m2 ∝ t am but with am ≈ 0.33 [34]. These results
confirm the validity of the theoretical analysis in Ref. [12]
where the value am = 1/3 was predicted. The computation of
�(t ) for all these DKG [Fig. 2(b)] and DDNLS [Fig. 2(d)]
strong chaos cases show again a power-law decay � ∝ tα� ,
but now α� ≈ −0.46.

Similarly to 1D systems [17,19], the results of Figs. 1
and 2 show, for both the weak and strong chaos regimes,
subdiffusive spreading which remains chaotic up to the largest
simulation times. The systems become less chaotic as �

decreases in time, but since this decrease remains always
different from the � ∝ t−1 law observed for regular motion
[� ∝ t−0.37 	 t−1 and � ∝ t−0.46 	 t−1, for the weak and
strong chaos regimes, respectively], we do not find any signs
of a crossover to regular dynamics as it was speculated in
Ref. [35]. The time evolution of � can be understood in a sim-
ilar way as in 1D systems [17,19]. As time grows the constant
total energy (norm) of the DKG (DDNLS) system is shared
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FIG. 2. Strong chaos. Similar to Fig. 1. The presented cases are
S1K , S2K , and S3K for the DKG and S1D, S2D, and S3D the DDNLS
model [blue (b), green (g), and red (r), respectively, for both models].
The straight dashed lines indicate am = 0.33 [(a) and (c)] and α� =
−0.46 [(b) and (d)].

among more degrees of freedom as additional lattice sites are
excited. In this way the energy (norm) density of the excited
sites, which quantifies the effective strength of nonlinearity,
diminishes, leading to a decrease of chaos strength, which is
reflected in the power-law decay of �.

Following Refs. [17,19] we find that the wave packets’
chaotization is done fast enough to support its spreading since
the Lyapunov time TL = 1/�, which determines a timescale
for the systems’ chaotization, remains always smaller than
the characteristic spreading time TD = 1/D (with D being the
momentary diffusion coefficient defined through m2 ∼ Dt). In
particular, the ratio of these timescales,

TD

TL
∼ t1+α�−am , (9)

becomes TD/TL ∼ t0.43 (t0.21) for the weak (strong) chaos
regime. The fact that these ratios are very close to the ones
observed for the 1D counterparts of systems (1) and (2)
[17,19], i.e., TD/TL ∼ t0.42 (t0.2) for the weak (strong) chaos
regime, strongly suggests that nonlinear interactions of the
same nature are responsible for the chaotic wave-packet
spreading in one and two spatial dimensions.

Investigating further the relation between 1D and 2D sys-
tems we note that, for both dynamical regimes, the rate of
spreading in 2D models (quantified by the exponent am) is
smaller than in the 1D case. Moreover, 2D systems are less
chaotic than their 1D counterparts as their � decreases faster
(i.e., smaller, negative α� values). Thus, the dynamics in
1D lattices leads to more extended wave packets and more
chaotic behaviors than in 2D systems. This observation and
the analysis of the TD/TL ratios, lead to the conjecture that
for one and two spatial dimensions there exists a uniform
scaling between the wave packet’s spreading and its degree
of chaoticity. This can be quantified by assuming

�1(t )

m1
2(t )

= �(t )

m2(t )
, (10)
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FIG. 3. Three-dimensional density profile and associated 2D
color map (upper sides) snapshots of the wave packet ξl,m [(a)–(c)]
and DVD ξD

l,m [(d)–(f)] for a representative example of the S2K case
at times log10 t ≈ 3.7 [(a) and (d)], 5.9 [(b) and (e)], and 7.4 [(c) and
(f)]. The white region at the maps’ central part represents the area
covered by the distribution’s center. The red curves on the sides are
distribution’s projections along the l and m axes. The color bar at the
top is in logarithmic scale.

where the subscript 1 refers to 1D systems. To validate this
assumption we use Eq. (10) to estimate the time evolution
of �(t ), for both spreading regimes, based on previously
obtained numerical results for the MLE of the 1D DKG
and DDNLS models [17,19], along with the theoretical pre-
dictions of Ref. [12] for the evolution of m2. In particular,
Eq. (10) gives

� ∝ t am−a1
m+α1

�, (11)

resulting to � ∝ t−0.38 (t−0.47) for the weak (strong) chaos
regime where am = 1/5, a1

m = 1/3, α1
� = −0.25 (am = 1/3,

a1
m = 1/2, α1

� = −0.3), being in very good agreement to � ∝
t−0.37 (t−0.46) observed in Figs. 1(b) and 1(d) [Figs. 2(b) and
2(d)].

The evolution of the DVD associated with the deviation
vector w(t ) used for the computation of � has already been
implemented to visualize the chaotic behavior of 1D nonlinear
lattices and to identify the motion of chaotic seeds, i.e.,
regions which are more sensitive to perturbations [17,19,36].
Local chaotic seeds in 1D disordered nonlinear lattices were
also observed and discussed in Refs. [9,14,15,18] but, to
the best of our knowledge, this is the first time that their
behavior is studied in disordered nonlinear systems with two
spatial dimensions. A representative case is shown in Fig. 3
where we plot the spatiotemporal evolution of the wave packet
ξl,m [Figs. 3(a)–3(c)] and the DVD [Figs. 3(d)–3(f)] for an
individual set-up of the S2K case. We see that the energy
density spreads rather symmetrically around the position of
the initial excitation, with the distribution’s center covering a
tiny region around the middle of the lattice [white area at the
center of the 2D color maps at the upper sides of Figs. 3(a)–
3(c)]. On the other hand, the DVD [Figs. 3(d)–3(f)] remains
always well inside the lattice’s excited part, retaining a rather
localized character and a concentrated, pointy shape, although
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FIG. 4. DVD characteristics: Weak chaos (insets: Strong chaos).
Averaged results of the evolution of mD

2 (t ) [(a) and (d)], PD(t )
[(b) and (e)], and A(t ) [(c) and (f)] for the DKG [(a)–(c)] and the
DDNLS [(d)–(f)] model. The curve colors correspond to the cases of
Fig. 1 (insets: Fig. 2). Shaded areas indicate one standard deviation.
The dashed lines denote power-law increases with exponents aD

m =
0.12 (insets: 0.17) [(a) and (d)], aD

P = 0.045 (insets: 0.0) [(b) and
(e)] and αA = 0.5 (insets: 0.55) [(c) and (f)].

its extent increases slightly in time. These behaviors lead, for
both models, to the rather slow increase of the DVD’s second
moment in Figs. 4(a) and 4(d) as mD

2 ∝ t aD
m with aD

m ≈ 0.12
(0.17), and the practical constancy of the DVD’s participation
number PD in Figs. 4(b) and 4(e) for the weak (strong) chaos
regime, with a very slow increase PD ∝ t0.045 observed in
Figs. 4(b) and 4(e).

The chaotic seeds exhibit random fluctuations of increasing
width, as the growth of the white region indicating the path
traveled by the DVD’s center shows in the 2D color maps at
the upper sides of Figs. 3(d)–3(f). As in 1D lattices [17,19],
these fluctuations are essential in homogenizing chaos inside
the wave packet, supporting in this way its thermalization and
spreading. To quantify the area of the region visited by the
DVD’s center we plot in Figs. 4(c) and 4(f) the evolution of

A(t ) = Rx(t )Ry(t ), (12)

where Rx(t ) = max[0,t]{lD
(t )} − min[0,t]{lD

(t )} and Ry(t ) =
max[0,t]{mD(t )} − min[0,t]{mD(t )}, in analogy to a similar
quantity used in 1D studies (Eq. (12) of Ref. [19]). In all cases
A ∝ tαA , with αA ≈ 0.5 (0.55) for the weak (strong) chaos
regime. The larger A(t ) and αA values obtained in the strong
chaos case [insets of Figs. 4(c) and 4(f)] clearly indicate the
wider and faster motion of chaotic seeds in this regime, where
also faster wave-packet spreading is observed.

It is worth discussing a bit more the time evolution of A
(12) in connection to the time evolution of m2 (7). The wave
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packet’s second moment m2 is only one measure of the wave
packet’s extent. From its definition in Eq. (7) we see that it is
measured in units of (distance)2, i.e., it quantifies the “area”
covered by the wave packet. It is important to note that this
is actually a weighted measure of that area, with the weight
being the energy or norm density ξl,m. In our set-up, regions
further away from the point of initial excitation are contribut-
ing to the m2 value much less as ξl,m decreases rapidly. On
the other hand, the estimator A (12) of the area visited by
the DVD, which is also measured in (distance)2 units, is not
weighted and, consequently, regions further away from the
region of the initial excitation are equally contributing to the
value of A. This is why the exponents αA in A ∝ tαA , are larger
than the exponents am in m2 ∝ t am , something which could
create the wrong impression that the area covered by the DVD
(quantified by the unweighted quantity A) increases faster
than the area of the wave packet (quantified by the weighted
quantity m2). For example, by comparing Figs. 3(c) and 3(f)
we see that the white region in the 2D color map of Fig. 3(f)
(DVD), used for the computation of A, corresponds to a region
in Fig. 3(c) (wave packet) having ξl,m values two to three
orders of magnitude smaller at its boarders with respect to its
central part. Thus, in the computation of m2 the outer parts
contribute much less, while for A all parts contribute equally.

IV. CONCLUSIONS

We conducted a detailed study of the evolution of initially
localized wave packets, in both the weak and strong chaos
dynamical regimes, of 2D disordered nonlinear lattices by per-
forming long-time and high-precision numerical simulations
in large DKG and DDNLS lattices with quartic nonlinearities,
completing in this way some previous, sporadic works on this
issue [5,16]. We showed the subdiffusive spreading of wave
packets resulting in the destruction of AL and verified the
validity of previously made [12] theoretical predictions on the
characteristics of these spreadings by finding that m2 ∝ t am

with am ≈ 1/5 (1/3) for the weak (strong) chaos regime.
We also investigated the chaotic properties of these systems

through the computation of appropriate observables related

to their tangent dynamics. The finite-time MLE, �, decays
in time as � ∝ tα� , with α� ≈ −0.37 (−0.46) in the weak
(strong) chaos case, denoting the decrease of the systems’
chaoticity as wave packets spread. Despite this slowing down
of chaos, our results show that the chaotization of the lattice’s
excited part always takes place faster than the wave packet’s
spreading, i.e., wave packets first thermalize due to chaos
and then spread. Furthermore, no signs of a crossover to
regular dynamics is observed, indicating that chaos persists.
Conjecturing the similarity of chaotic processes in 1D and 2D
systems, along with the existence of a scaling between the
wave packet’s spreading and chaoticity, which is independent
of the lattice’s dimensionality [Eq. (10)], we accurately pre-
dict the numerically obtained α� values. In the future we plan
to probe the generality of this conjecture also for 3D systems.

The DVDs’ spatiotemporal evolution revealed the mecha-
nisms of chaotic spreading: Localized chaotic seeds oscillate
randomly inside the excited part of the lattice, homogenizing
chaos in the interior of the wave packet, and supporting in
this way its thermalization and subdiffusing spreading. The
amplitude of these oscillations increase in time allowing the
chaotic seeds to visit all regions of the expanding wave packet.
This process is generic as it also appeared in 1D systems
[17,19].

The fact that in both the DKG and DDNLS models we
observed the same evolution laws, with identical numerical
exponents for all studied quantities, underlines the universal-
ity of our findings.
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